On the weak convergence of vector-valued continuous random processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

WEAK CONVERGENCE OF MEASURE-VALUED PROCESSES AND r-POINT FUNCTIONS

We prove a sufficient set of conditions for a sequence of finite measures on the space of cadlag measure-valued paths to converge to the canonical measure of super-Brownian motion in the sense of convergence of finitedimensional distributions. The conditions are convergence of the Fourier transform of the r-point functions and perhaps convergence of the “survival probabilities.” These condition...

متن کامل

on $l_1$-weak ergodicity of nonhomogeneous continuous-time markov‎ ‎processes

‎in the present paper we investigate the $l_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time markov processes with general state‎ ‎spaces‎. ‎we provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $l_1$-weak ergodicity‎. ‎moreover‎, ‎we apply‎ ‎the obtained results to establish $l_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

On the Existence of Continuous Modifications of Vector-valued Random Fields

We consider vector-valued random fields on a general index set in R and show the existence of continuous modifications if some Kolmogorov type condition is satisfied. Furthermore, we prove an extension result for Hölder continuous vector valued mappings. 2000 Mathematics Subject Classification: 60G60, 46E40.

متن کامل

Weak Convergence of Random Functions

Let {vij}, i, j = 1, 2, . . . , be i.i.d. symmetric random variables with E(v 11) < ∞, and for each n let Mn = 1 sVnV T n , where Vn = (vij), i = 1, 2, . . . , n, j = 1, 2, . . . , s = s(n), and n/s → y > 0 as n → ∞. Denote by OnΛnO n the spectral decomposition of Mn. Define X ∈ D[0, 1] by Xn(t) = √ n 2 ∑[nt] i=1(y 2 i − 1 n), where (y1, y2, . . . , yn) = O (± 1 √ n ,± 1 √ n , . . . ,± 1 √ n ) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Теория вероятностей и ее применения

سال: 1998

ISSN: 0040-361X

DOI: 10.4213/tvp1560